Tetrahedron Letters No. 32, pp 2771 - 2774, 1977. Pergamon Press. Printed in Great Britain.

CHAETOGLOBOSINS G AND J, CYTOTOXIC INDOL-3-YL[13]-

CYTOCHALASANS FROM Chaetomium globosum

Setsuko SEKITA, Kunitoshi YOSHIHIRA, and Shinsaku NATORI*

National Institute of Hygienic Sciences, Kamiyoga-1-chome, Setagaya-ku, Tokyo, Japan

and

Harumitsu KUWANO

Central Research Laboratories, Sankyo Co., Ltd., Shinagawa-ku, Tokyo, Japan

(Received in Japan 26 May 1977; received in UK for publication 20 June 1977)

CYTOCHALASINS¹⁾ are now attracting attention as a group of mycotoxins and a tool for cell biology.²⁾ The chemistry of chaetoglobosins A - F, new members of cytochalasins bearing an indol-3-yl group from *Chaetomium globosum*, was reported in the previous communications.³⁻⁵⁾ The stereochemistry adopted in the preceding papers^{4,5)} for A - D (<u>1</u> - <u>4</u>) was later proved to express the absolute configurations of these compounds.⁶⁾ This communication concerns further evidence for the structures of chaetoglobosins E and F and characterization of two new congeners from the same source.

The structures proposed for E and F^{5} were based on the comparison of their physical properties, especially of ¹H-NMR data, to those of A - D, whose structures had been established by X-ray analyses^{4,6}) and correlation reactions. Now chemical proof of the structures has been obtained as follows: Treatment of chaetoglobosin F in boiling acetic acid forms chaetoglobosin E in a good yield. Oxidation of α -ketol group in F with Bi₂O₃ in acetic acid to α -diketone afforded chaetoglobosin C (3)^{5,7}) along with an isomer of B (chaetoglobosin G, 7, vide infra). Thus the compounds were correlated each other.⁸) The stereochemistry of C₂₀ in E and F was suggested to be (S) from following facts. The conformations of the 13-membered rings in chaeto-globosins A and C in the crystalline state revealed by X-ray analyses (Chart 1)^{4,6,7} are indicated as being retained in CDCl₃ or C₆D₅N solution by the precise examinations of the chemical shifts and the coupling constants in ¹H-NMR.⁸) The examination of the ³H-NMR data of E and F and the acetates revealed that the l3-membered ring adopts nearly the same conformation as A - D.

2771

Since nuclear Overhauser effects were observed between the C_{17} -olefinic protons with C_{20} -carbinyl protons both in E and F (Chart 1), the stereochemistry was assigned as shown in the formulae (5) and (6).⁸⁾

The new chaetoglobosin, named G, colorless leaflets of mp 251-253° from MeOH, $[\alpha]_{D}$ + 89° (MeOH), λ_{max}^{EtOH} 222, 275, 282, 291 nm (log ε 4.51, 3.79, 3.79, 3.73), ν_{max}^{KBr} 3455, 3300, 1713, 1693, 1646, 1623, 987, 948, 741 cm⁻¹, has the same molecular formula as chaetoglobosins A - D, $C_{32}H_{36}O_5N_2$ (M⁺ 528.269 m/e, calcd., 528.262). It forms a monoacetate. The ¹H-NMR spectra of G and the acetate indicated that the perhydroisoindolone part of the molecule is same as chaetoglobosins B (2) and E (5), while the 13-membered ring portion is same as chaetoglobosin C (3).⁸ Indeed the cleavage of the epoxide ring of chaetoglobosin C (3) with HOAc, under the same conditions as B (2) was formed from A (1), afforded the new congener, while treatment of C (3) with HOAc-H₂SO₄ gave the acetate of G. On the other hand treatment of B (2) with Et₃N-pyridine, under the same conditions as C (3) was produced from A (1), afforded the new congener. These reactions clearly demonstrated that the structure of chaetoglobosin G must be the formula (7).

The other new member, chaetoglobosin J, pale yellow prisms of mp 149-151° from benzene, λ_{max}^{Et0H} 224, 270, 280, 290 nm (log ε 4.68, 3.86, 3.86, 3.78), ν_{max}^{KBr} 3412, 3273, 1683, 1639, 1612, 980, 975, 925, 750 cm⁻¹, has a molecular formula, $C_{32}H_{36}O_4N_2$ (M⁺ 512.258 m/e, calcd. 512.250), which corresponds to a deoxygenated compound of chaetoglobosins A - D and suggests a similarity to zygosporin G⁹ and proxiphomin¹⁰ in the case of 10-phenylcytochalasans. It forms a monoacetate. Indeed ¹H-NMR spectra of J and the acetate revealed that the 13-membered ring is same as A (<u>1</u>), B (<u>2</u>), and D (<u>4</u>) but the perhydroisoindolone part was assigned as shown in Chart 2. Direct proof of the structure was obtained by the deoxygenation reaction of chaetoglobosin A monoacetate with WCl₆-BuLi¹¹ to give the acetate of chaetoglobosin J and the structure

with WCl₆-BuLi¹¹⁾ to give the acetate of chaetoglobosin J and the structure ($\underline{8}$) was established for the new congener.

Although chaetoglobosins G and J exhibited nearly the same cytotoxicity to cultured HeLa cells at ca 3 μ g/ml, it is noteworthy that, unlike other members of the group, chaetoglobosin J does not form multinucleated cells.¹²)

References

- 1) M. Binder, Ch. Tamm: Angew. Chem., Intern. Ed., 12, 370 (1973).
- 2) S. B. Carter: Endeavour, 113, 77 (1972): S. Natori: Proc. of UJNR Conference on Mycotoxins to Human and Animal Health, College Park, Md., U. S. A., 1976, in the press.
- 3) S. Sekita, K. Yoshihira, S. Natori, H. Kuwano: Tetrahedron Letters, 1973, 2109.
- J. V. Silverton, T. Akiyama, C. Kabuto, S. Sekita, K. Yoshihira, S. Natori: Tetrahedron Letters, <u>1976</u>, 1349.
- 5) S. Sekita, K. Yoshihira, S. Natori, H. Kuwano: Tetrahedron Letters, 1976, 1351.
- 6) J. V. Silverton, C. Kabuto, T. Akiyama: Submitted to Acta Crystallographica (1977).
- 7) J. P. Springer, J. Clardy, J. M. Wells, R. J. Cole, J. W. Kirksey, R. D. MacFarlane, D. F. Torgerson: Tetrahedron Letters, <u>1976</u>, 1355.
- 8) S. Sekita, K. Yoshihira, S. Natori, H. Kuwano, M. Umeda: 20th Symposium on the Chemistry of Natural Products, Sendai, Japan, 1976, Symposium Papers, p. 396.
- 9) H. Minato, T. Katayama: J. Chem. Soc., C, 1970, 45.
- 10) M. Binder, Ch. Tamm: Helv. Chim. Acta, 56, 2387 (1973).
- K. B. Sharpless, M. A. Umbreit, M. T. Nieh, T. C. Flood: J. Am. Chem. Soc., 94, 6538 (1972);
 K. Yamada, H. Tatematsu, Y. Hirata, M. Haga, I. Hirono: Chemistry Letters, 1976, 1123.
- 12) M. Umeda: Private communication.